metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.152D10, C10.962- (1+4), C42.C2⋊8D5, C4⋊C4.208D10, (C4×D20).25C2, D10⋊2Q8⋊38C2, (C4×Dic10)⋊48C2, (C2×C20).90C23, C4.Dic10⋊35C2, D10.39(C4○D4), C20.129(C4○D4), (C2×C10).238C24, (C4×C20).197C22, C4.38(Q8⋊2D5), D10.13D4.3C2, (C2×D20).233C22, C4⋊Dic5.243C22, C22.259(C23×D5), (C2×Dic5).123C23, (C4×Dic5).152C22, (C22×D5).103C23, C2.58(D4.10D10), D10⋊C4.138C22, C5⋊10(C22.46C24), (C2×Dic10).307C22, C10.D4.123C22, (D5×C4⋊C4)⋊38C2, C2.89(D5×C4○D4), C4⋊C4⋊D5⋊36C2, C4⋊C4⋊7D5⋊37C2, C10.200(C2×C4○D4), C2.23(C2×Q8⋊2D5), (C5×C42.C2)⋊11C2, (C2×C4×D5).137C22, (C2×C4).81(C22×D5), (C5×C4⋊C4).193C22, SmallGroup(320,1366)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 710 in 214 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×12], C22, C22 [×7], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×14], D4 [×2], Q8 [×2], C23 [×2], D5 [×3], C10 [×3], C42, C42 [×4], C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×10], C22×C4 [×4], C2×D4, C2×Q8, Dic5 [×6], C20 [×2], C20 [×6], D10 [×2], D10 [×5], C2×C10, C2×C4⋊C4, C42⋊C2 [×3], C4×D4, C4×Q8, C22⋊Q8 [×2], C22.D4 [×2], C42.C2, C42.C2 [×2], C42⋊2C2 [×2], Dic10 [×2], C4×D5 [×8], D20 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×4], C22×D5 [×2], C22.46C24, C4×Dic5 [×4], C10.D4 [×4], C4⋊Dic5 [×2], C4⋊Dic5 [×4], D10⋊C4 [×2], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×2], C2×C4×D5 [×2], C2×D20, C4×Dic10, C4×D20, C4.Dic10 [×2], D5×C4⋊C4, C4⋊C4⋊7D5, C4⋊C4⋊7D5 [×2], D10.13D4 [×2], D10⋊2Q8 [×2], C4⋊C4⋊D5 [×2], C5×C42.C2, C42.152D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.46C24, Q8⋊2D5 [×2], C23×D5, C2×Q8⋊2D5, D5×C4○D4, D4.10D10, C42.152D10
Generators and relations
G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c9 >
(1 118 25 53)(2 54 26 119)(3 120 27 55)(4 56 28 101)(5 102 29 57)(6 58 30 103)(7 104 31 59)(8 60 32 105)(9 106 33 41)(10 42 34 107)(11 108 35 43)(12 44 36 109)(13 110 37 45)(14 46 38 111)(15 112 39 47)(16 48 40 113)(17 114 21 49)(18 50 22 115)(19 116 23 51)(20 52 24 117)(61 141 134 90)(62 91 135 142)(63 143 136 92)(64 93 137 144)(65 145 138 94)(66 95 139 146)(67 147 140 96)(68 97 121 148)(69 149 122 98)(70 99 123 150)(71 151 124 100)(72 81 125 152)(73 153 126 82)(74 83 127 154)(75 155 128 84)(76 85 129 156)(77 157 130 86)(78 87 131 158)(79 159 132 88)(80 89 133 160)
(1 153 11 143)(2 93 12 83)(3 155 13 145)(4 95 14 85)(5 157 15 147)(6 97 16 87)(7 159 17 149)(8 99 18 89)(9 141 19 151)(10 81 20 91)(21 98 31 88)(22 160 32 150)(23 100 33 90)(24 142 34 152)(25 82 35 92)(26 144 36 154)(27 84 37 94)(28 146 38 156)(29 86 39 96)(30 148 40 158)(41 61 51 71)(42 125 52 135)(43 63 53 73)(44 127 54 137)(45 65 55 75)(46 129 56 139)(47 67 57 77)(48 131 58 121)(49 69 59 79)(50 133 60 123)(62 107 72 117)(64 109 74 119)(66 111 76 101)(68 113 78 103)(70 115 80 105)(102 130 112 140)(104 132 114 122)(106 134 116 124)(108 136 118 126)(110 138 120 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 152 11 142)(2 141 12 151)(3 150 13 160)(4 159 14 149)(5 148 15 158)(6 157 16 147)(7 146 17 156)(8 155 18 145)(9 144 19 154)(10 153 20 143)(21 85 31 95)(22 94 32 84)(23 83 33 93)(24 92 34 82)(25 81 35 91)(26 90 36 100)(27 99 37 89)(28 88 38 98)(29 97 39 87)(30 86 40 96)(41 64 51 74)(42 73 52 63)(43 62 53 72)(44 71 54 61)(45 80 55 70)(46 69 56 79)(47 78 57 68)(48 67 58 77)(49 76 59 66)(50 65 60 75)(101 132 111 122)(102 121 112 131)(103 130 113 140)(104 139 114 129)(105 128 115 138)(106 137 116 127)(107 126 117 136)(108 135 118 125)(109 124 119 134)(110 133 120 123)
G:=sub<Sym(160)| (1,118,25,53)(2,54,26,119)(3,120,27,55)(4,56,28,101)(5,102,29,57)(6,58,30,103)(7,104,31,59)(8,60,32,105)(9,106,33,41)(10,42,34,107)(11,108,35,43)(12,44,36,109)(13,110,37,45)(14,46,38,111)(15,112,39,47)(16,48,40,113)(17,114,21,49)(18,50,22,115)(19,116,23,51)(20,52,24,117)(61,141,134,90)(62,91,135,142)(63,143,136,92)(64,93,137,144)(65,145,138,94)(66,95,139,146)(67,147,140,96)(68,97,121,148)(69,149,122,98)(70,99,123,150)(71,151,124,100)(72,81,125,152)(73,153,126,82)(74,83,127,154)(75,155,128,84)(76,85,129,156)(77,157,130,86)(78,87,131,158)(79,159,132,88)(80,89,133,160), (1,153,11,143)(2,93,12,83)(3,155,13,145)(4,95,14,85)(5,157,15,147)(6,97,16,87)(7,159,17,149)(8,99,18,89)(9,141,19,151)(10,81,20,91)(21,98,31,88)(22,160,32,150)(23,100,33,90)(24,142,34,152)(25,82,35,92)(26,144,36,154)(27,84,37,94)(28,146,38,156)(29,86,39,96)(30,148,40,158)(41,61,51,71)(42,125,52,135)(43,63,53,73)(44,127,54,137)(45,65,55,75)(46,129,56,139)(47,67,57,77)(48,131,58,121)(49,69,59,79)(50,133,60,123)(62,107,72,117)(64,109,74,119)(66,111,76,101)(68,113,78,103)(70,115,80,105)(102,130,112,140)(104,132,114,122)(106,134,116,124)(108,136,118,126)(110,138,120,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,11,142)(2,141,12,151)(3,150,13,160)(4,159,14,149)(5,148,15,158)(6,157,16,147)(7,146,17,156)(8,155,18,145)(9,144,19,154)(10,153,20,143)(21,85,31,95)(22,94,32,84)(23,83,33,93)(24,92,34,82)(25,81,35,91)(26,90,36,100)(27,99,37,89)(28,88,38,98)(29,97,39,87)(30,86,40,96)(41,64,51,74)(42,73,52,63)(43,62,53,72)(44,71,54,61)(45,80,55,70)(46,69,56,79)(47,78,57,68)(48,67,58,77)(49,76,59,66)(50,65,60,75)(101,132,111,122)(102,121,112,131)(103,130,113,140)(104,139,114,129)(105,128,115,138)(106,137,116,127)(107,126,117,136)(108,135,118,125)(109,124,119,134)(110,133,120,123)>;
G:=Group( (1,118,25,53)(2,54,26,119)(3,120,27,55)(4,56,28,101)(5,102,29,57)(6,58,30,103)(7,104,31,59)(8,60,32,105)(9,106,33,41)(10,42,34,107)(11,108,35,43)(12,44,36,109)(13,110,37,45)(14,46,38,111)(15,112,39,47)(16,48,40,113)(17,114,21,49)(18,50,22,115)(19,116,23,51)(20,52,24,117)(61,141,134,90)(62,91,135,142)(63,143,136,92)(64,93,137,144)(65,145,138,94)(66,95,139,146)(67,147,140,96)(68,97,121,148)(69,149,122,98)(70,99,123,150)(71,151,124,100)(72,81,125,152)(73,153,126,82)(74,83,127,154)(75,155,128,84)(76,85,129,156)(77,157,130,86)(78,87,131,158)(79,159,132,88)(80,89,133,160), (1,153,11,143)(2,93,12,83)(3,155,13,145)(4,95,14,85)(5,157,15,147)(6,97,16,87)(7,159,17,149)(8,99,18,89)(9,141,19,151)(10,81,20,91)(21,98,31,88)(22,160,32,150)(23,100,33,90)(24,142,34,152)(25,82,35,92)(26,144,36,154)(27,84,37,94)(28,146,38,156)(29,86,39,96)(30,148,40,158)(41,61,51,71)(42,125,52,135)(43,63,53,73)(44,127,54,137)(45,65,55,75)(46,129,56,139)(47,67,57,77)(48,131,58,121)(49,69,59,79)(50,133,60,123)(62,107,72,117)(64,109,74,119)(66,111,76,101)(68,113,78,103)(70,115,80,105)(102,130,112,140)(104,132,114,122)(106,134,116,124)(108,136,118,126)(110,138,120,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,11,142)(2,141,12,151)(3,150,13,160)(4,159,14,149)(5,148,15,158)(6,157,16,147)(7,146,17,156)(8,155,18,145)(9,144,19,154)(10,153,20,143)(21,85,31,95)(22,94,32,84)(23,83,33,93)(24,92,34,82)(25,81,35,91)(26,90,36,100)(27,99,37,89)(28,88,38,98)(29,97,39,87)(30,86,40,96)(41,64,51,74)(42,73,52,63)(43,62,53,72)(44,71,54,61)(45,80,55,70)(46,69,56,79)(47,78,57,68)(48,67,58,77)(49,76,59,66)(50,65,60,75)(101,132,111,122)(102,121,112,131)(103,130,113,140)(104,139,114,129)(105,128,115,138)(106,137,116,127)(107,126,117,136)(108,135,118,125)(109,124,119,134)(110,133,120,123) );
G=PermutationGroup([(1,118,25,53),(2,54,26,119),(3,120,27,55),(4,56,28,101),(5,102,29,57),(6,58,30,103),(7,104,31,59),(8,60,32,105),(9,106,33,41),(10,42,34,107),(11,108,35,43),(12,44,36,109),(13,110,37,45),(14,46,38,111),(15,112,39,47),(16,48,40,113),(17,114,21,49),(18,50,22,115),(19,116,23,51),(20,52,24,117),(61,141,134,90),(62,91,135,142),(63,143,136,92),(64,93,137,144),(65,145,138,94),(66,95,139,146),(67,147,140,96),(68,97,121,148),(69,149,122,98),(70,99,123,150),(71,151,124,100),(72,81,125,152),(73,153,126,82),(74,83,127,154),(75,155,128,84),(76,85,129,156),(77,157,130,86),(78,87,131,158),(79,159,132,88),(80,89,133,160)], [(1,153,11,143),(2,93,12,83),(3,155,13,145),(4,95,14,85),(5,157,15,147),(6,97,16,87),(7,159,17,149),(8,99,18,89),(9,141,19,151),(10,81,20,91),(21,98,31,88),(22,160,32,150),(23,100,33,90),(24,142,34,152),(25,82,35,92),(26,144,36,154),(27,84,37,94),(28,146,38,156),(29,86,39,96),(30,148,40,158),(41,61,51,71),(42,125,52,135),(43,63,53,73),(44,127,54,137),(45,65,55,75),(46,129,56,139),(47,67,57,77),(48,131,58,121),(49,69,59,79),(50,133,60,123),(62,107,72,117),(64,109,74,119),(66,111,76,101),(68,113,78,103),(70,115,80,105),(102,130,112,140),(104,132,114,122),(106,134,116,124),(108,136,118,126),(110,138,120,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,152,11,142),(2,141,12,151),(3,150,13,160),(4,159,14,149),(5,148,15,158),(6,157,16,147),(7,146,17,156),(8,155,18,145),(9,144,19,154),(10,153,20,143),(21,85,31,95),(22,94,32,84),(23,83,33,93),(24,92,34,82),(25,81,35,91),(26,90,36,100),(27,99,37,89),(28,88,38,98),(29,97,39,87),(30,86,40,96),(41,64,51,74),(42,73,52,63),(43,62,53,72),(44,71,54,61),(45,80,55,70),(46,69,56,79),(47,78,57,68),(48,67,58,77),(49,76,59,66),(50,65,60,75),(101,132,111,122),(102,121,112,131),(103,130,113,140),(104,139,114,129),(105,128,115,138),(106,137,116,127),(107,126,117,136),(108,135,118,125),(109,124,119,134),(110,133,120,123)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 1 | 32 |
1 | 39 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 9 | 1 |
9 | 23 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 34 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 39 |
0 | 0 | 0 | 0 | 40 | 9 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 35 | 0 | 0 |
0 | 0 | 8 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 2 |
0 | 0 | 0 | 0 | 1 | 32 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,1,0,0,0,0,0,32],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,9,0,0,0,0,0,1],[9,0,0,0,0,0,23,32,0,0,0,0,0,0,0,34,0,0,0,0,6,7,0,0,0,0,0,0,32,40,0,0,0,0,39,9],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,7,8,0,0,0,0,35,34,0,0,0,0,0,0,9,1,0,0,0,0,2,32] >;
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | ··· | 4I | 4J | ··· | 4O | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 20 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | 2- (1+4) | Q8⋊2D5 | D5×C4○D4 | D4.10D10 |
kernel | C42.152D10 | C4×Dic10 | C4×D20 | C4.Dic10 | D5×C4⋊C4 | C4⋊C4⋊7D5 | D10.13D4 | D10⋊2Q8 | C4⋊C4⋊D5 | C5×C42.C2 | C42.C2 | C20 | D10 | C42 | C4⋊C4 | C10 | C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 2 | 1 | 2 | 4 | 4 | 2 | 12 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{152}D_{10}
% in TeX
G:=Group("C4^2.152D10");
// GroupNames label
G:=SmallGroup(320,1366);
// by ID
G=gap.SmallGroup(320,1366);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,297,192,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations